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LElTER TO THE EDITOR 

Intrinsic anisotropy of clusters in cluster-cluster aggregation 

R Botet and R Jullien 
Laboratoire de Physique des Solides, BBtiment 510, UniversitC Paris-Sud, Centre d’Orsay, 
91405 Orsay, France 

Received 1 July 1986 

Abstract. The anisotropy ratio between the largest and the smallest eigenvalues of the 
radius of gyration tensor R f ,  has been analytically investigated and numerically estimated 
for three different cluster-cluster aggregation processes. This ratio is of the order of 4.5 
for a two-dimensional projection of a three-dimensional cluster grown by cluster-cluster 
processes and is quite independent of the precise nature of the cluster trajectories. 

In the last five years, two main classes of models for the aggregation of particles have 
been introduced and numerically investigated: particle-cluster ( PC) (Witten and Sander 
1981) and cluster-cluster (cc) (Meakin 1983a,b, Kolb et a1 1983) models. They 
successfully explain the tenuous fractal structure of aggregates which shows up in 
several condensation experiments (Landau and Family 1984, Boccara and Daoud 1985, 
Stanley and Ostrowski 1985, Pietronero and Tosatti 1986, Herrmann 1986). In many 
cases, the unique parameter for quantitative comparisons between simulations and 
experiments has been the so-called fractal dimension, D, which tells how the mean 
radius, i.e. the radius of gyration, R,, varies with the number of particles, N, in the 
aggregate: 

R i -  N2’ with v =  1/D. (1) 

While D is a very interesting global quantity which can be directly measured in many 
experiments, it ignores some intrinsic details, one of which is the intrinsic anisotropy 
of the clusters, i.e. the possible deviation from a spherical shape, which appears in 
some specific experiments (transport properties, induced polarisation, etc). Here we 
do not consider the induced anisotropy which is due to the subjacent lattice (Ball and 
Brady 1985, Kolb 1985, Meakin 1986). 

The anisotropy properties of clusters of particles have been recently studied in 
some models: random walks (Kuhn 1934, Solc 1971, Bishop and Michels 1985), 
self-avoiding walks (Rudnick and Gaspari 1986) and lattice animals and percolation 
(Freche et a1 1985, Family et a1 1985, Garik 1985, Lam 1986). Since the very beginning 
of the cc model, it has been recognised that clusters grown by this process were 
anisotropic (Hentschel 1984, see also Allain and Jouhier 1983), taking into account 
some very old results (Medalia 1967, 1970, Medalia and Heckman 1971, Sutherland 
and Goodan-Nia 1971, Ravey 1975). In this letter, we investigate both numerically 
for d = 2,3,4 and analytically for any d the anisotropy of clusters grown with the 
different known cc models: the original version (Meakin 1983a, Kolb et a1 1983) which 
considers Brownian diffusion (BCC), the one which considers linear trajectories (LCC) 

(Ball and Jullien 1984, Meakin 1984) and the chemical model (ccc) (Jullien and Kolb 
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1984, Kolb and Jullien 1984, Brown and Ball 1985) which corresponds to considering 
a vanishing sticking probability. In all these calculations the ‘hierarchical’ procedure 
(Botet e? a1 1984) is systematically used. 

As in Family et a1 (1985), we define the radius of gyration tensor R;, where the 
indices i and j refer to the i and j coordinates (1 d i, j S d in a d-dimensional space). 
Diagonalising this tensor gives the principal radii of gyration, that we denote by Rf, 
where the single index i now labels the eigenvalues (1 =s i d  d )  that we put in the 
following conventional order: 

R f ~ = R ; a . . . a R i .  (2) 

Due to the invariance of the trace of the tensor RC, we have 
d 

RZ, = R:. 
i = l  

(3) 

Moreover, since we consider self-similar objects, we will assume that all the radii 

Now we would like to show that the clusters are anisotropic in any dimension d 
R: and Rf scale asymptotically with N as N’“ as for R: (see (1)). 

and find a lower bound for the largest anisotropy ratio: 

Al = R:/ R i .  

This comes directly from the hierarchical process of aggregation. When two clusters 
of the same number of particles stick together, the averaged square distance (A’) 
between their centres of mass can be derived when calculating the radius of gyration 
of the final cluster as a function of the radii of gyration of the two colliding clusters 
(Ball and Witten 1984, Jullieh 1984, Botet 1986): 

(A’) =4(R:(2N) - R:(N)). 

Using ( l ) ,  this can be written as 

(A2)=4(2’”- l)R:(N). (4) 

Let us call a the axis which goes through the two centres of mass and express RZ, 
as a function of the Rf for the two clusters: 

R;, = $( R: COS’ el cos’ e2 . . . cos’ 6d-1+ R: cos’ 8, COS’ 8’ . . . COS’ 8d-2 sin’ e d - l +  . . . 
+ R i  sin’ + A2/4) + CT 

where the Oi are the angles between the U axis and the principal axes of one cluster 
and where CT denotes the corresponding terms written for the other cluster. Now we 
must average over all the angles el ,  e’,. . . , ed-1  for both clusters, without knowing 
their precise probability distribution. Let us define ai =$(cos’ 8, . . . cos’ Bi); one has 

R;, = (R:- R:)ad-l + ( R i -  R:)ad-’+. . .+ (Ri- ,  - R i ) a l  + R i / 2 + ( A 2 ) / 8 + c ~ .  

deduces the inequality 
Since, from (2), all the quantities Rf-Rf+,  are positive as well as the ai, one 

RZ, 5 €ti + (A2)/4. 

Using the fact that the largest eigenvalue of the tensor of radii of gyration is 
obviously not smaller than R:, and using the scaling properties, we find 

2’”R:(N) = R:(2N)a R;,(2N)B R$(N)+(A2)/4 
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from which we extract a lower bound for the anisotropy: 

A , ~ 2 - ” ( 1  +(A2)/(4R2,)). 

Combining (2)-(4), we get 

(A2)/(4R$)=(22”-1)R:(N)/R~(N)3d(22”-1) 

which allows us to derive the following inequality: 

Al>d(1-2-2”)+2-2’. ( 5 )  

We can also find a lower limit independent of the fractal dimension. Since we 
know (Ball and Witten 1984, Botet 1985) that DSDc=ln4 / ln (3 /2 )  for any space 
dimension, we find 

A, 3 (d +2)/3. 

As a direct consequence, for any hierarchical cluster-cluster aggregation process 
and for any space dimension (different from one) the resulting clusters are anisotropic 
and the anisotropy ratio A, between the largest and the smallest eigenvalues must tend 
to infinity, at least linearly in d, when d tends to infinity. This lower bound is, however, 
certainly greatly underestimated and a numerical calculation is needed to estimate 
reasonable values for the Ai. 

Using the hierarchical procedure previously described (Botet et a1 1984), we have 
built, in two dimensions, up to 100 independent clusters of 1024 particles in the three 
models BCC (on lattice), LCC (off lattice) and ccc (on lattice). The eigenvalues R: 
and R:, calculated for each cluster separately, have been averaged over the whole 
collection of clusters of 2 k  particles at each step k of the iterative procedure. The 
results for the ratio A, = (R:)/(R:) are given in figure 1, as a plot of A, against 1/N. 
Within the rather large fluctuations, A, is roughly size independent, yielding good 
confidence on its extrapolation to infinite size. A, is estimated to be 5.7 f 0.2, 5.2 f 0.2 
and 4.7 f 0.2 in BCC, LCC and ccc, respectively. Although slightly larger, the value 
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Figure 1. Plot of the anisotropy ratio A, as a function of 1/N for three different 
cluster-cluster aggregation processes (BCC, LCC and ccc, see text) and for two different 
particle-cluster processes ( B p c  and L p c ) .  
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found for A, in the case of linear trajectories corresponds to the one reported previously 
(Sutherland and Goodarz-Nia 1971). When comparing the three models studied here 
one observes a systematic decrease of A, when increasing the fractal dimension. The 
anisotropy, as well as the fractal dimension, is however only slightly dependent on 
the nature of the trajectory and the quantitative differences are only slightly larger 
than the error bars. The fact that the anisotropy ratio A, is quite independent of cluster 
size can be related to the fact that the correction term to the scaling equation ( 1 )  
appears to be a constant (Ball and Jullien 1984). If this can be generalised to all 
eigenvalues Rf ,  anisotropy ratios must behave as 

A(N)-A(m)+O(l /R:)  

so that the corrective term should be about two orders of magnitude smaller than A 
for all the sizes reported in figure 1. 

For comparison, we have also shown in figure 1 the values of AI calculated for 
two particle-cluster aggregation processes with linear ( LPC) and Brownain ( BPC) 

trajectories (which is the original DLA model of Witten and Sander (1981)). As expected, 
the limiting value for the anisotropy is 1. This means that the PC clusters have equal 
principal radii of gyration in the thermodynamic limit. We must note that the diamond 
shape recently observed for some PC clusters on a square lattice (Ball and Brady 1985, 
Freche et a1 1985, Meakin 1986) is another kind of anisotropy which is induced by 
the subjacent lattice and which is not in contradiction with equal eigenvalues along 
the orthogonal principal axes. In figure 1, we observe strong size dependence for the 
anisotropy of PC models, which, in the Brownian case, can be estimated to be 

A, - 1 + a N - b  

with a = 6.3 f 0.2 and b = 0.32 f 0.04. This scaling is reminiscent of the correction terms 
to ( 1 )  for the DLA process (Kolb 1985). The case of linear trajectories is more 
complicated and no power law dependence is found for A, against N. There could 
be perhaps some logarithmic corrections as already proposed for this model (Meakin 
1983b). 

To summarise the results displayed in figure 1 and table 1, one can say that in ZD 

cluster-cluster aggregates are anisotropic and that their anisotropy ratio (A,  - 5)  does 
not depend too much on the particular version used. They are completely different 
from the particle-cluster models for which the anisotropy ratio tends to 1 for large 
cluster sizes, but with strong size dependence. 

In table 2, we have reported the results for the d - 1 anisotropy ratios Ai = ( R f ) / ( R ; )  
for space dimensions d = 2,3,4.  The calculations have been performed on the LCC 
model only since small differences between the models exist (quantitative differences 
are then of the order of the error bars). Here also we have built clusters up to 1024 

Table 1. Anisotropy ratio between the largest and the smallest eigenvalues of the radius 
of gyration tensor, in dimension 2, estimated from finite-size extrapolations (figure 1 )  in 
the case of three cluster-cluster aggregation models. 

Brownian Linear Chemical 

A,  5.7k0.2 5.2 f 0.2 4.7 * 0.2 

D 1.42*0.003 1.51*0.03 1.56 * 0.03 
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Table 2. Anisotropy ratios Ai = ( R j ) / ( R ; )  between the ith and the lowest eigenvalues of 
the radius of gyration tensor, estimated from finite-size extrapolations in the case of the 
cluster-cluster aggregation model with linear trajectories, for space dimensions up to 
d = 4. The anisotropy ratio A; for a two-dimensional projection of a three-dimensional 
cluster is also given. 

d AI A2 A3 A; 

2 5.2 * 0.02 
3 10.0*0.3 2.5 * 0.3 4.5 f 0.3 
4 14.0*0.5 4.2 * 0.4 2.0 * 0.3 

particles but the number of generated clusters descreases when increasing space 
dimension (100, 20 and 4 for d = 2,3,4, respectively). One observes that, for a given 
value of d, all the eigenvalues are different. Moreover the value of AI seems to grow 
linearly with d, as in ( 5 ) ,  but with a considerably large slope. From an experimental 
point of view, it is of interest to have information about the projection of three- 
dimensional clusters onto a plane. The coefficient Ai for a such a projection has been 
numerically calculated and is also reported in table 2. A: is of the order of 4.5, slightly 
smaller than for a two-dimensional process. To conclude, we hope that the present 
work will stimulate further experimental investigations. 

We would like to thank P Pfeuty for discussions. The numerical calculations were 
supported by an ATP from the CNRS and were performed at CIRCE (Centre Inter- 
rigional de Calcul Electronique). 

Note added in prooj  After this letter was accepted for publication we heard of an earlier (unpublished) 
similar work by P Meakin, F Family and T Vicsek who found exactly the same numerical results as us, in 
two dimensions. They also calculated the ratio A; = ( R : / R ; )  that they always found to be smaller than 
A, = ( R : ) / ( R i ) .  A ;  = 4.4 and 4.0 respectively for Brownian and linear trajectories as compared with A, = 5.7 
and 5.2. We acknowledge P Meakin for providing us with these results. 
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