Intrinsic anisotropy of clusters in cluster-cluster aggregation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L907
(http://iopscience.iop.org/0305-4470/19/15/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:03

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Intrinsic anisotropy of clusters in cluster-cluster aggregation

R Botet and R Jullien
Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, Centre d'Orsay, 91405 Orsay, France

Received 1 July 1986

Abstract

The anisotropy ratio between the largest and the smallest eigenvalues of the radius of gyration tensor $R_{i j}^{2}$ has been analytically investigated and numerically estimated for three different cluster-cluster aggregation processes. This ratio is of the order of 4.5 for a two-dimensional projection of a three-dimensional cluster grown by cluster-cluster processes and is quite independent of the precise nature of the cluster trajectories.

In the last five years, two main classes of models for the aggregation of particles have been introduced and numerically investigated: particle-cluster (PC) (Witten and Sander 1981) and cluster-cluster (cc) (Meakin 1983a, b, Kolb et al 1983) models. They successfully explain the tenuous fractal structure of aggregates which shows up in several condensation experiments (Landau and Family 1984, Boccara and Daoud 1985, Stanley and Ostrowski 1985, Pietronero and Tosatti 1986, Herrmann 1986). In many cases, the unique parameter for quantitative comparisons between simulations and experiments has been the so-called fractal dimension, D, which tells how the mean radius, i.e. the radius of gyration, R_{g}, varies with the number of particles, N, in the aggregate:

$$
\begin{equation*}
R_{\mathrm{g}}^{2} \sim N^{2 \nu} \quad \text { with } \nu=1 / D . \tag{1}
\end{equation*}
$$

While D is a very interesting global quantity which can be directly measured in many experiments, it ignores some intrinsic details, one of which is the intrinsic anisotropy of the clusters, i.e. the possible deviation from a spherical shape, which appears in some specific experiments (transport properties, induced polarisation, etc). Here we do not consider the induced anisotropy which is due to the subjacent lattice (Ball and Brady 1985, Kolb 1985, Meakin 1986).

The anisotropy properties of clusters of particles have been recently studied in some models: random walks (Kuhn 1934, Solc 1971, Bishop and Michels 1985), self-avoiding walks (Rudnick and Gaspari 1986) and lattice animals and percolation (Freche et al 1985, Family et al 1985, Garik 1985, Lam 1986). Since the very beginning of the CC model, it has been recognised that clusters grown by this process were anisotropic (Hentschel 1984, see also Allain and Jouhier 1983), taking into account some very old results (Medalia 1967, 1970, Medalia and Heckman 1971, Sutherland and Goodarz-Nia 1971, Ravey 1975). In this letter, we investigate both numerically for $d=2,3,4$ and analytically for any d the anisotropy of clusters grown with the different known CC models: the original version (Meakin 1983a, Kolb et al 1983) which considers Brownian diffusion (BCC), the one which considers linear trajectories (LCC) (Ball and Jullien 1984, Meakin 1984) and the chemical model (ccc) (Jullien and Kolb

1984, Kolb and Jullien 1984, Brown and Ball 1985) which corresponds to considering a vanishing sticking probability. In all these calculations the 'hierarchical' procedure (Botet et al 1984) is systematically used.

As in Family et al (1985), we define the radius of gyration tensor $R_{i j}^{2}$, where the indices i and j refer to the i and j coordinates ($1 \leq i, j \leqslant d$ in a d-dimensional space). Diagonalising this tensor gives the principal radii of gyration, that we denote by R_{i}^{2}, where the single index i now labels the eigenvalues ($1 \leqslant i \leqslant d$) that we put in the following conventional order:

$$
\begin{equation*}
R_{1}^{2} \geqslant R_{2}^{2} \geqslant \ldots \geqslant R_{d}^{2} \tag{2}
\end{equation*}
$$

Due to the invariance of the trace of the tensor $R_{i j}^{2}$, we have

$$
\begin{equation*}
\sum_{i=1}^{d} R_{i j}^{2}=R_{\mathrm{g}}^{2} \tag{3}
\end{equation*}
$$

Moreover, since we consider self-similar objects, we will assume that all the radii $R_{i j}^{2}$ and R_{i}^{2} scale asymptotically with N as $N^{2 \nu}$ as for R_{g}^{2} (see (1)).

Now we would like to show that the clusters are anisotropic in any dimension d and find a lower bound for the largest anisotropy ratio:

$$
A_{1}=R_{1}^{2} / R_{d}^{2} .
$$

This comes directly from the hierarchical process of aggregation. When two clusters of the same number of particles stick together, the averaged square distance $\left\langle\Delta^{2}\right\rangle$ between their centres of mass can be derived when calculating the radius of gyration of the final cluster as a function of the radii of gyration of the two colliding clusters (Ball and Witten 1984, Jullien 1984, Botet 1986):

$$
\left\langle\Delta^{2}\right\rangle=4\left(R_{\mathrm{g}}^{2}(2 N)-R_{\mathrm{g}}^{2}(N)\right)
$$

Using (1), this can be written as

$$
\begin{equation*}
\left\langle\Delta^{2}\right\rangle=4\left(2^{2 \nu}-1\right) R_{\mathrm{g}}^{2}(N) \tag{4}
\end{equation*}
$$

Let us call a the axis which goes through the two centres of mass and express $R_{a a}^{2}$ as a function of the R_{i}^{2} for the two clusters:

$$
\begin{gathered}
R_{a a}^{2}=\frac{1}{2}\left(R_{1}^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2} \ldots \cos ^{2} \theta_{d-1}+R_{2}^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2} \ldots \cos ^{2} \theta_{d-2} \sin ^{2} \theta_{d-1}+\ldots\right. \\
\left.+R_{d}^{2} \sin ^{2} \theta_{1}+\Delta^{2} / 4\right)+\mathrm{CT}
\end{gathered}
$$

where the θ_{i} are the angles between the a axis and the principal axes of one cluster and where ст denotes the corresponding terms written for the other cluster. Now we must average over all the angles $\theta_{1}, \theta_{2}, \ldots, \theta_{d-1}$ for both clusters, without knowing their precise probability distribution. Let us define $\alpha_{i}=\frac{1}{2}\left(\cos ^{2} \theta_{1} \ldots \cos ^{2} \theta_{i}\right)$; one has $R_{a a}^{2}=\left(R_{1}^{2}-R_{2}^{2}\right) \alpha_{d-1}+\left(R_{2}^{2}-R_{3}^{2}\right) \alpha_{d-2}+\ldots+\left(R_{d-1}^{2}-R_{d}^{2}\right) \alpha_{1}+R_{d}^{2} / 2+\left(\Delta^{2}\right\rangle / 8+\mathrm{CT}$.

Since, from (2), all the quantities $R_{i}^{2}-R_{i+1}^{2}$ are positive as well as the α_{i}, one deduces the inequality

$$
R_{a a}^{2} \geqslant R_{d}^{2}+\left\langle\Delta^{2}\right\rangle / 4
$$

Using the fact that the largest eigenvalue of the tensor of radii of gyration is obviously not smaller than $R_{a a}^{2}$ and using the scaling properties, we find

$$
2^{2 \nu} R_{1}^{2}(N)=R_{1}^{2}(2 N) \geqslant R_{a a}^{2}(2 N) \geqslant R_{d}^{2}(N)+\left\langle\Delta^{2}\right\rangle / 4
$$

from which we extract a lower bound for the anisotropy:

$$
A_{1} \geqslant 2^{-2 \nu}\left(1+\left\langle\Delta^{2}\right\rangle /\left(4 R_{d}^{2}\right)\right) .
$$

Combining (2)-(4), we get

$$
\left\langle\Delta^{2}\right\rangle /\left(4 R_{d}^{2}\right)=\left(2^{2 \nu}-1\right) R_{\mathrm{g}}^{2}(N) / R_{d}^{2}(N) \geqslant d\left(2^{2 \nu}-1\right)
$$

which allows us to derive the following inequality:

$$
\begin{equation*}
A_{1} \geqslant d\left(1-2^{-2 \nu}\right)+2^{-2 \nu} \tag{5}
\end{equation*}
$$

We can also find a lower limit independent of the fractal dimension. Since we know (Ball and Witten 1984, Botet 1985) that $D \leqslant D_{c}=\ln 4 / \ln (3 / 2)$ for any space dimension, we find

$$
A_{1} \geqslant(d+2) / 3
$$

As a direct consequence, for any hierarchical cluster-cluster aggregation process and for any space dimension (different from one) the resulting clusters are anisotropic and the anisotropy ratio A_{1} between the largest and the smallest eigenvalues must tend to infinity, at least linearly in d, when d tends to infinity. This lower bound is, however, certainly greatly underestimated and a numerical calculation is needed to estimate reasonable values for the A_{i}.

Using the hierarchical procedure previously described (Botet et al 1984), we have built, in two dimensions, up to 100 independent clusters of 1024 particles in the three models BCC (on lattice), LCC (off lattice) and CCC (on lattice). The eigenvalues R_{1}^{2} and R_{2}^{2}, calculated for each cluster separately, have been averaged over the whole collection of clusters of 2^{k} particles at each step k of the iterative procedure. The results for the ratio $A_{1}=\left\langle R_{1}^{2}\right\rangle /\left\langle R_{2}^{2}\right\rangle$ are given in figure 1 , as a plot of A_{1} against $1 / N$. Within the rather large fluctuations, A_{1} is roughly size independent, yielding good confidence on its extrapolation to infinite size. A_{1} is estimated to be $5.7 \pm 0.2,5.2 \pm 0.2$ and 4.7 ± 0.2 in BCC, LCC and CCC, respectively. Although slightly larger, the value

Figure 1. Plot of the anisotropy ratio A_{1} as a function of $1 / N$ for three different cluster-cluster aggregation processes (BCC, LCC and CCC, see text) and for two different particle-cluster processes (BPC and LPC).
found for A_{1} in the case of linear trajectories corresponds to the one reported previously (Sutherland and Goodarz-Nia 1971). When comparing the three models studied here one observes a systematic decrease of A_{1} when increasing the fractal dimension. The anisotropy, as well as the fractal dimension, is however only slightly dependent on the nature of the trajectory and the quantitative differences are only slightly larger than the error bars. The fact that the anisotropy ratio A_{1} is quite independent of cluster size can be related to the fact that the correction term to the scaling equation (1) appears to be a constant (Ball and Jullien 1984). If this can be generalised to all eigenvalues R_{i}^{2}, anisotropy ratios must behave as

$$
A(N) \sim A(\infty)+O\left(1 / R_{\mathrm{g}}^{2}\right)
$$

so that the corrective term should be about two orders of magnitude smaller than A for all the sizes reported in figure 1.

For comparison, we have also shown in figure 1 the values of A_{1} calculated for two particle-cluster aggregation processes with linear (LPC) and Brownain (BPC) trajectories (which is the original dla model of Witten and Sander (1981)). As expected, the limiting value for the anisotropy is 1 . This means that the PC clusters have equal principal radii of gyration in the thermodynamic limit. We must note that the diamond shape recently observed for some PC clusters on a square lattice (Ball and Brady 1985, Freche et al 1985, Meakin 1986) is another kind of anisotropy which is induced by the subjacent lattice and which is not in contradiction with equal eigenvalues along the orthogonal principal axes. In figure 1, we observe strong size dependence for the anisotropy of PC models, which, in the Brownian case, can be estimated to be

$$
A_{1} \sim 1+a N^{-b}
$$

with $a=6.3 \pm 0.2$ and $b=0.32 \pm 0.04$. This scaling is reminiscent of the correction terms to (1) for the dla process (Kolb 1985). The case of linear trajectories is more complicated and no power law dependence is found for A_{1} against N. There could be perhaps some logarithmic corrections as already proposed for this model (Meakin 1983b).

To summarise the results displayed in figure 1 and table 1, one can say that in 2D cluster-cluster aggregates are anisotropic and that their anisotropy ratio ($A_{1} \sim 5$) does not depend too much on the particular version used. They are completely different from the particle-cluster models for which the anisotropy ratio tends to 1 for large cluster sizes, but with strong size dependence.

In table 2, we have reported the results for the $d-1$ anisotropy ratios $A_{i}=\left\langle R_{i}^{2}\right\rangle /\left\langle R_{d}^{2}\right\rangle$ for space dimensions $d=2,3,4$. The calculations have been performed on the lCC model only since small differences between the models exist (quantitative differences are then of the order of the error bars). Here also we have built clusters up to 1024

Table 1. Anisotropy ratio between the largest and the smallest eigenvalues of the radius of gyration tensor, in dimension 2, estimated from finite-size extrapolations (figure 1) in the case of three cluster-cluster aggregation models.

	Brownian	Linear	Chemical
A_{1}	5.7 ± 0.2	5.2 ± 0.2	4.7 ± 0.2
D	1.42 ± 0.003	1.51 ± 0.03	1.56 ± 0.03

Table 2. Anisotropy ratios $A_{i}=\left\langle R_{i}^{2}\right\rangle /\left\langle R_{d}^{2}\right\rangle$ between the i th and the lowest eigenvalues of the radius of gyration tensor, estimated from finite-size extrapolations in the case of the cluster-cluster aggregration model with linear trajectories, for space dimensions up to $d=4$. The anisotropy ratio A_{1}^{\prime} for a two-dimensional projection of a three-dimensional cluster is also given.

d	A_{1}	A_{2}	A_{3}	A_{1}^{\prime}
2	5.2 ± 0.02			
3	10.0 ± 0.3	2.5 ± 0.3		4.5 ± 0.3
4	14.0 ± 0.5	4.2 ± 0.4	2.0 ± 0.3	

particles but the number of generated clusters descreases when increasing space dimension (100,20 and 4 for $d=2,3,4$, respectively). One observes that, for a given value of d, all the eigenvalues are different. Moreover the value of A_{1} seems to grow linearly with d, as in (5), but with a considerably large slope. From an experimental point of view, it is of interest to have information about the projection of threedimensional clusters onto a plane. The coefficient A_{1}^{\prime} for a such a projection has been numerically calculated and is also reported in table $2 . A_{1}^{\prime}$ is of the order of 4.5 , slightly smaller than for a two-dimensional process. To conclude, we hope that the present work will stimulate further experimental investigations.

We would like to thank P Pfeuty for discussions. The numerical calculations were supported by an ATP from the CNRS and were performed at CIRCE (Centre Interrégional de Calcul Electronique).

Note added in proof. After this letter was accepted for publication we heard of an earlier (unpublished) similar work by P Meakin, F Family and T Vicsek who found exactly the same numerical results as us, in two dimensions. They also calculated the ratio $A_{1}^{\prime}=\left\langle R_{1}^{2} / R_{d}^{2}\right\rangle$ that they always found to be smaller than $A_{1}=\left\langle R_{1}^{2}\right\rangle /\left\langle R_{d}^{2}\right\rangle . A_{1}^{\prime} \simeq 4.4$ and 4.0 respectively for Brownian and linear trajectories as compared with $A_{1}=5.7$ and 5.2. We acknowledge P Meakin for providing us with these results.

References

Allain C and Jouhier B 1983 J. Physique Lett. 44 L421
Ball R C and Brady R M 1985 J. Phys. A: Math. Gen. 18 L809
Ball R C and Jullien R 1984 J. Physique Lett. 45, L1031
Ball R C and Witten T A 1984 J. Stat. Phys. 36873
Bishop M and Michels J P J 1985 J. Chem. Phys. Lett. 55641
Boccara N and Daoud M (ed) 1985 Physics of Finely Divided Matter (Berlin: Springer)
Botet R 1985 J. Phys. A: Math. Gen. 18847

- 1986 Thesis Orsay

Botet R, Jullien R and Kolb M 1984 J. Phys. A: Math. Gen. 17 L75
Brown W D and Ball R C 1985 J. Phys. A: Math. Gen. 18 L517
Family F, Vicsek T and Meakin P 1985 Phys. Rev. Lett. 55641
Freche P, Stauffer S and Stanley H E 1985 J. Phys. A: Math. Gen. 18 L1163
Garik P 1985 Phys. Rev. A 321275
Hentschel H G E 1984 Phys. Rev. A 291609
Herrmann H 1986 Phys. Rep. 136153
Jullien R 1984 J. Phys. A: Math. Gen. 17 L771
Jullien R and Kolb M 1984 J. Phys. A: Math. Gen. 17 L639
Kolb M 1985 J. Physique Lett. 46 L631

Kolb M, Botet R and Jullien R 1983 Phys. Rev. Lett. 511123
Kolb M and Jullien 1984 J. Physique Lett. 45 L977
Kuhn W, 1934 Kolloid Z. 682
Lam P M 1986 J. Phys.A: Math. Gen. 19 L155
Landau D P and Family F (ed) 1984 Kinetics of Aggregation and Gelation (Amsterdam: North Holland)
Meakin P 1983a Phys. Rev. Lett. 511119

- 1983b J. Colloid Interface Sci. 96415
- 1984 J. Colloid Interface Sci. 102505
- 1986 Phys. Rev. A 333371

Medalia A I 1967 J. Colloid Interface Sci. 24393

- 1970 J. Colloid Interface Sci. 32115

Medalia A I and Heckman F A 1971 J. Colloid Interface Sci. 36173
Pietronero L and Tosatti E (ed) 1986 Fractals in Physics (Amsterdam: North-Holland)
Ravey J C 1975 J. Colloid Interface Sci. 50545
Rudnick J and Gaspari G 1986 J. Phys. A: Math. Gen. 19 L191
Solc K 1971 J. Chem. Phys. 55335
Stanley H E and Ostrowski N (ed) 1985 On Growth and Forms, A Modern View (Amsterdam: Martinus Nijhoff)
Sutherland D N and Goodarz-Nia J 1971 Chem. Engng. Sci. 262071
Witten T A and Sander L M 1981 Phys. Rev. Lett. 471400

